bog baseret test «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsorer

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Virksomheders handlinger i relation til personale i den sidste måned (ja / nej)

2) Handlinger af virksomheder i forhold til personale i den sidste måned (faktum i%)

3) Frygt.

4) Største problemer står overfor mit land

5) Hvilke kvaliteter og evner bruger gode ledere, når de bygger succesrige hold?

6) Google. Faktorer, der påvirker teamets effektiv

7) De vigtigste prioriteter for jobsøgende

8) Hvad gør en chef til en stor leder?

9) Hvad gør folk succesrige på arbejdet?

10) Er du klar til at modtage mindre løn for at arbejde eksternt?

11) Eksisterer ageisme?

12) Alderisme i karriere

13) Alderisme i livet

14) Årsager til alder

15) Årsager til, at folk giver op (af Anna Vital)

16) TILLID (#WVS)

17) Oxford Happiness Survey

18) Psykologisk velvære

19) Hvor ville være din næste mest spændende mulighed?

20) Hvad vil du gøre i denne uge for at passe på din mentale sundhed?

21) Jeg lever og tænker på min fortid, nutid eller fremtid

22) Meritokrati

23) Kunstig intelligens og civilisationens afslutning

24) Hvorfor udsætter folk?

25) Kønsforskel i opbygning af selvtillid (IFD Allensbach)

26) Xing.com kulturvurdering

27) Patrick Lencionis "de fem dysfunktioner af et hold"

28) Empati er ...

29) Hvad er vigtigt for IT -specialister i at vælge et jobtilbud?

30) Hvorfor folk modstår forandring (af Siobhán McHale)

31) Hvordan regulerer du dine følelser? (af Nawal Mustafa M.A.)

32) 21 færdigheder, der betaler dig for evigt (af Jeremiah Teo / 赵汉昇)

33) Rigtig frihed er ...

34) 12 måder at opbygge tillid hos andre (af Justin Wright)

35) Karakteristika for en talentfuld medarbejder (af Talent Management Institute)

36) 10 nøgler til at motivere dit team

37) Samvittighedens algebra (af Vladimir Lefebvre)

38) Fremtidens tre distinkte muligheder (af Dr. Clare W. Graves)

39) Handlinger for at opbygge urokkelig selvtillid (af Suren Samarchyan)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Frygt.

Land
Sprog
-
Mail
Beregner igen
Kritisk værdi af korrelationskoefficienten
Normal distribution af William Sealy Gosset (studerende) r = 0.0318
Normal distribution af William Sealy Gosset (studerende) r = 0.0318
Ikke normal distribution af Spearman r = 0.0013
FordelingIkke
normal
Ikke
normal
Ikke
normal
NormalNormalNormalNormalNormal
Alle spørgsmål
Alle spørgsmål
Min største frygt er
Min største frygt er
Answer 1-
Svag positiv
0.0554
Svag positiv
0.0283
Svag negativ
-0.0173
Svag positiv
0.0940
Svag positiv
0.0355
Svag negativ
-0.0157
Svag negativ
-0.1559
Answer 2-
Svag positiv
0.0194
Svag negativ
-0.0048
Svag negativ
-0.0394
Svag positiv
0.0659
Svag positiv
0.0490
Svag positiv
0.0117
Svag negativ
-0.0981
Answer 3-
Svag negativ
-0.0011
Svag negativ
-0.0085
Svag negativ
-0.0450
Svag negativ
-0.0440
Svag positiv
0.0474
Svag positiv
0.0740
Svag negativ
-0.0192
Answer 4-
Svag positiv
0.0427
Svag positiv
0.0272
Svag negativ
-0.0230
Svag positiv
0.0182
Svag positiv
0.0351
Svag positiv
0.0239
Svag negativ
-0.0995
Answer 5-
Svag positiv
0.0268
Svag positiv
0.1299
Svag positiv
0.0101
Svag positiv
0.0772
Svag negativ
-0.0003
Svag negativ
-0.0182
Svag negativ
-0.1785
Answer 6-
Svag negativ
-0.0028
Svag positiv
0.0050
Svag negativ
-0.0621
Svag negativ
-0.0081
Svag positiv
0.0241
Svag positiv
0.0856
Svag negativ
-0.0347
Answer 7-
Svag positiv
0.0102
Svag positiv
0.0340
Svag negativ
-0.0661
Svag negativ
-0.0304
Svag positiv
0.0518
Svag positiv
0.0687
Svag negativ
-0.0515
Answer 8-
Svag positiv
0.0632
Svag positiv
0.0732
Svag negativ
-0.0275
Svag positiv
0.0143
Svag positiv
0.0371
Svag positiv
0.0173
Svag negativ
-0.1337
Answer 9-
Svag positiv
0.0732
Svag positiv
0.1619
Svag positiv
0.0069
Svag positiv
0.0644
Svag negativ
-0.0108
Svag negativ
-0.0489
Svag negativ
-0.1811
Answer 10-
Svag positiv
0.0756
Svag positiv
0.0681
Svag negativ
-0.0139
Svag positiv
0.0290
Svag positiv
0.0341
Svag negativ
-0.0122
Svag negativ
-0.1343
Answer 11-
Svag positiv
0.0631
Svag positiv
0.0536
Svag negativ
-0.0091
Svag positiv
0.0113
Svag positiv
0.0239
Svag positiv
0.0247
Svag negativ
-0.1260
Answer 12-
Svag positiv
0.0442
Svag positiv
0.0943
Svag negativ
-0.0340
Svag positiv
0.0342
Svag positiv
0.0335
Svag positiv
0.0256
Svag negativ
-0.1535
Answer 13-
Svag positiv
0.0700
Svag positiv
0.0962
Svag negativ
-0.0393
Svag positiv
0.0295
Svag positiv
0.0412
Svag positiv
0.0147
Svag negativ
-0.1624
Answer 14-
Svag positiv
0.0783
Svag positiv
0.0900
Svag negativ
-0.0019
Svag negativ
-0.0089
Svag positiv
0.0043
Svag positiv
0.0139
Svag negativ
-0.1221
Answer 15-
Svag positiv
0.0538
Svag positiv
0.1282
Svag negativ
-0.0345
Svag positiv
0.0152
Svag negativ
-0.0176
Svag positiv
0.0237
Svag negativ
-0.1159
Answer 16-
Svag positiv
0.0699
Svag positiv
0.0263
Svag negativ
-0.0371
Svag negativ
-0.0377
Svag positiv
0.0699
Svag positiv
0.0205
Svag negativ
-0.0788


Eksport til MS Excel
Denne funktionalitet vil være tilgængelig i dine egne VUCA-afstemninger
Okay

You can not only just create your poll in the Tarif «V.U.C.A meningsmåling designer» (with a unique link and your logo) but also you can earn money by selling its results in the Tarif «Poll Shop», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarif «Min SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Produktejer SaaS SDTEST®

Valerii blev uddannet socialpædagog-psykolog i 1993 og har siden anvendt sin viden i projektledelse.
Valerii opnåede en kandidatgrad og projekt- og programlederkvalifikationen i 2013. I løbet af sin kandidatuddannelse blev han fortrolig med Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) og Spiral Dynamics.
Valerii er forfatteren til at udforske usikkerheden i V.U.C.A. koncept ved hjælp af Spiral Dynamics og matematisk statistik i psykologi, og 38 internationale meningsmålinger.
Dette indlæg har 0 Kommentarer
Svar til
Annuller et svar
Efterlad din kommentar
×
Du finder en fejl
FORESLÅR DIN korrekte version
Indtast din e-mail som ønsket
Sende
Afbestille
Bot
sdtest
1
Hej! Lad mig spørge dig, kender du allerede spiraldynamikken?