carte de test pe bază de «Spiral
Dynamics: Mastering Values, Leadership,
and Change» (ISBN-13: 978-1405133562)
Sponsori

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Acțiuni ale companiilor în raport cu personalul din ultima lună (da / nu)

2) Acțiuni ale companiilor în legătură cu personalul din ultima lună (fapt în%)

3) Temerile

4) Cele mai mari probleme cu care se confruntă țara mea

5) Ce calități și abilități folosesc liderii buni atunci când construiesc echipe de succes?

6) Google. Factori care afectează eficiența echipei

7) Principalele priorități ale solicitanților de locuri de muncă

8) Ce face un șef un mare lider?

9) Ce îi face pe oameni să aibă succes la serviciu?

10) Sunteți gata să primiți mai puțin salariu pentru a lucra de la distanță?

11) Există ageismul?

12) Ageismul în carieră

13) Ageismul în viață

14) Cauzele ageismului

15) Motivele pentru care oamenii renunță (de Anna Vital)

16) ÎNCREDERE (#WVS)

17) Oxford Happiness Survey

18) Bunăstarea psihologică

19) Unde ar fi următoarea ta cea mai interesantă oportunitate?

20) Ce vei face săptămâna aceasta pentru a avea grijă de sănătatea ta mentală?

21) Trăiesc gândindu -mă la trecutul, prezentul meu sau viitorul

22) Meritocrație

23) Inteligența artificială și sfârșitul civilizației

24) De ce se amânează oamenii?

25) Diferența de gen în construirea încrederii în sine (IFD Allensbach)

26) Xing.com Evaluarea culturii

27) „Cele cinci disfuncții ale unei echipe” ale lui Patrick Lencioni

28) Empatia este ...

29) Ce este esențial pentru specialiștii IT în alegerea unei oferte de muncă?

30) De ce oamenii rezistă schimbărilor (de Siobhán McHale)

31) Cum îți reglementezi emoțiile? (de Nawal Mustafa M.A.)

32) 21 Abilități care vă plătesc pentru totdeauna (de Jeremiah Teo / 赵汉昇)

33) Libertatea reală este ...

34) 12 moduri de a construi încredere cu ceilalți (de Justin Wright)

35) Caracteristicile unui angajat talentat (de către Institutul de Management Talent)

36) 10 taste pentru motivarea echipei tale

37) Algebra conștiinței (de Vladimir Lefebvre)

38) Trei posibilități distincte ale viitorului (de Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Temerile

Țară
Limba
-
Mail
Recalcula
Valoarea critică a coeficientului de corelație
Distribuție normală, de William Sealy Gosset (student) r = 0.0331
Distribuție normală, de William Sealy Gosset (student) r = 0.0331
Distribuție non -normală, de Spearman r = 0.0013
DistribuțieNon
normal
Non
normal
Non
normal
NormalNormalNormalNormalNormal
Toate întrebările
Toate întrebările
Cea mai mare frica mea este
Cea mai mare frica mea este
Answer 1-
Slab pozitiv
0.0563
Slab pozitiv
0.0317
Negativ slab
-0.0161
Slab pozitiv
0.0907
Slab pozitiv
0.0298
Negativ slab
-0.0126
Negativ slab
-0.1537
Answer 2-
Slab pozitiv
0.0216
Slab pozitiv
0.0002
Negativ slab
-0.0458
Slab pozitiv
0.0654
Slab pozitiv
0.0445
Slab pozitiv
0.0124
Negativ slab
-0.0937
Answer 3-
Negativ slab
-0.0035
Negativ slab
-0.0111
Negativ slab
-0.0421
Negativ slab
-0.0456
Slab pozitiv
0.0466
Slab pozitiv
0.0786
Negativ slab
-0.0201
Answer 4-
Slab pozitiv
0.0435
Slab pozitiv
0.0353
Negativ slab
-0.0181
Slab pozitiv
0.0145
Slab pozitiv
0.0301
Slab pozitiv
0.0197
Negativ slab
-0.0979
Answer 5-
Slab pozitiv
0.0299
Slab pozitiv
0.1279
Slab pozitiv
0.0136
Slab pozitiv
0.0730
Negativ slab
-0.0007
Negativ slab
-0.0207
Negativ slab
-0.1746
Answer 6-
Negativ slab
-0.0004
Slab pozitiv
0.0082
Negativ slab
-0.0629
Negativ slab
-0.0078
Slab pozitiv
0.0193
Slab pozitiv
0.0830
Negativ slab
-0.0318
Answer 7-
Slab pozitiv
0.0122
Slab pozitiv
0.0381
Negativ slab
-0.0686
Negativ slab
-0.0242
Slab pozitiv
0.0471
Slab pozitiv
0.0636
Negativ slab
-0.0513
Answer 8-
Slab pozitiv
0.0698
Slab pozitiv
0.0849
Negativ slab
-0.0321
Slab pozitiv
0.0146
Slab pozitiv
0.0345
Slab pozitiv
0.0130
Negativ slab
-0.1368
Answer 9-
Slab pozitiv
0.0665
Slab pozitiv
0.1674
Slab pozitiv
0.0092
Slab pozitiv
0.0691
Negativ slab
-0.0128
Negativ slab
-0.0528
Negativ slab
-0.1812
Answer 10-
Slab pozitiv
0.0778
Slab pozitiv
0.0755
Negativ slab
-0.0180
Slab pozitiv
0.0231
Slab pozitiv
0.0346
Negativ slab
-0.0146
Negativ slab
-0.1298
Answer 11-
Slab pozitiv
0.0584
Slab pozitiv
0.0524
Negativ slab
-0.0096
Slab pozitiv
0.0081
Slab pozitiv
0.0199
Slab pozitiv
0.0318
Negativ slab
-0.1197
Answer 12-
Slab pozitiv
0.0380
Slab pozitiv
0.1042
Negativ slab
-0.0352
Slab pozitiv
0.0357
Slab pozitiv
0.0254
Slab pozitiv
0.0286
Negativ slab
-0.1515
Answer 13-
Slab pozitiv
0.0644
Slab pozitiv
0.1057
Negativ slab
-0.0448
Slab pozitiv
0.0268
Slab pozitiv
0.0416
Slab pozitiv
0.0169
Negativ slab
-0.1600
Answer 14-
Slab pozitiv
0.0717
Slab pozitiv
0.1026
Negativ slab
-0.0006
Negativ slab
-0.0089
Negativ slab
-0.0012
Slab pozitiv
0.0080
Negativ slab
-0.1168
Answer 15-
Slab pozitiv
0.0549
Slab pozitiv
0.1375
Negativ slab
-0.0420
Slab pozitiv
0.0178
Negativ slab
-0.0160
Slab pozitiv
0.0216
Negativ slab
-0.1180
Answer 16-
Slab pozitiv
0.0591
Slab pozitiv
0.0273
Negativ slab
-0.0386
Negativ slab
-0.0399
Slab pozitiv
0.0653
Slab pozitiv
0.0282
Negativ slab
-0.0708


Export în MS Excel
Această funcție va fi disponibilă în propriile dvs. sondaje VUCA
O.K

You can not only just create your poll in the Tarifar «V.U.C.A designer de sondaj» (with a unique link and your logo) but also you can earn money by selling its results in the Tarifar «Magazin de sondaj», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarifar «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Proprietar de produse SaaS Pet Project SDTest®

Valerii a fost calificat ca pedagog-psiholog pe pedagog social în 1993 și de atunci și-a aplicat cunoștințele în managementul de proiect.
Valerii a obținut o diplomă de master și calificarea managerului de proiect și program în 2013. În timpul programului său de master, s -a familiarizat cu foaia de parcurs a proiectului (GPM Deutsche Gesellschaft Für ProjektManagement e. V.) și dinamica spirală.
Valerii a făcut diverse teste de dinamică în spirală și și -a folosit cunoștințele și experiența pentru a adapta versiunea actuală a SDTest.
Valerii este autorul explorării incertitudinii V.U.C.A. Conceptul folosind dinamica spirală și statisticile matematice în psihologie, mai mult de 20 de sondaje internaționale.
Această postare are 0 Comentarii
Raspunde la
Anulați un răspuns
Lasă -ți comentariul
×
Găsiți o eroare
PROPUNEM VERSIUNEA corectă
Introduceți adresa dvs. de e-mail după cum doriți
Trimite
Anulare
Bot
sdtest
1
Bună! Permiteți -mi să vă întreb, sunteți deja familiarizați cu dinamica spirală?