पुस्तक आधारित परीक्षण «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
प्रायोजक

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) पिछले महीने में कर्मियों के संबंध में कंपनियों की कार्रवाई (हाँ / नहीं)

2) पिछले महीने में कर्मियों के संबंध में कंपनियों की कार्रवाइयां (% में तथ्य)

3) आशंका

4) मेरे देश के सामने सबसे बड़ी समस्याएं

5) सफल टीमों के निर्माण के दौरान अच्छे नेताओं का उपयोग कौन से गुण और क्षमताएं करते हैं?

6) गूगल। कारक जो टीम की अपवित्रता को प्रभावित करते हैं

7) नौकरी चाहने वालों की मुख्य प्राथमिकताएं

8) एक बॉस एक महान नेता क्या बनाता है?

9) क्या काम पर लोगों को सफल बनाता है?

10) क्या आप दूर से काम करने के लिए कम वेतन प्राप्त करने के लिए तैयार हैं?

11) क्या उम्रवाद मौजूद है?

12) कैरियर में आयुवाद

13) जीवन में आयुवाद

14) आयुवाद के कारण

15) कारण लोग क्यों छोड़ देते हैं (अन्ना विटाल द्वारा)

16) विश्वास (#WVS)

17) ऑक्सफोर्ड हैप्पीनेस सर्वे

18) मनोवैज्ञानिक स्वस्थ्य

19) आपका अगला सबसे रोमांचक अवसर कहां होगा?

20) अपने मानसिक स्वास्थ्य की देखभाल के लिए आप इस सप्ताह क्या करेंगे?

21) मैं अपने अतीत, वर्तमान या भविष्य के बारे में सोचता हूं

22) प्रतिभा

23) कृत्रिम बुद्धिमत्ता और सभ्यता का अंत

24) लोग शिथिल क्यों होते हैं?

25) आत्मविश्वास के निर्माण में लिंग अंतर (IFD Allensbach)

26) Xing.com संस्कृति का आकलन

27) पैट्रिक लीकोनी की "द फाइव डिसफंक्शन ऑफ ए टीम"

28) सहानुभूति है ...

29) नौकरी की पेशकश चुनने में आईटी विशेषज्ञों के लिए क्या आवश्यक है?

30) क्यों लोग परिवर्तन का विरोध करते हैं (Siobhán Mchale द्वारा)

31) आप अपनी भावनाओं को कैसे विनियमित करते हैं? (नवल मुस्तफा एम.ए.)

32) 21 कौशल जो आपको हमेशा के लिए भुगतान करते हैं (यिर्मयाह तेओ / 赵汉昇 द्वारा)

33) वास्तविक स्वतंत्रता है ...

34) दूसरों के साथ विश्वास बनाने के 12 तरीके (जस्टिन राइट द्वारा)

35) एक प्रतिभाशाली कर्मचारी की विशेषताएं (प्रतिभा प्रबंधन संस्थान द्वारा)

36) अपनी टीम को प्रेरित करने के लिए 10 कुंजी

37) विवेक का बीजगणित (व्लादिमीर लेफेब्रे द्वारा)

38) भविष्य की तीन विशिष्ट संभावनाएँ (डॉ. क्लेयर डब्ल्यू. ग्रेव्स द्वारा)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

आशंका

देश
भाषा: हिन्दी
-
Mail
पुनर्गणना
सहसंबंध गुणांक का महत्वपूर्ण मान
विलियम सीली गॉसेट (छात्र) द्वारा सामान्य वितरण, r = 0.0329
विलियम सीली गॉसेट (छात्र) द्वारा सामान्य वितरण, r = 0.0329
गैर -सामान्य वितरण, स्पीयरमैन द्वारा r = 0.0013
वितरणसामान्यसामान्यसामान्यसामान्यसामान्यसामान्यसामान्यसामान्य
सभी प्रश्न
सभी प्रश्न
मेरा सबसे बड़ा डर है
मेरा सबसे बड़ा डर है
Answer 1-
कमजोर सकारात्मक
0.0566
कमजोर सकारात्मक
0.0332
कमजोर नकारात्मक
-0.0170
कमजोर सकारात्मक
0.0912
कमजोर सकारात्मक
0.0308
कमजोर नकारात्मक
-0.0153
कमजोर नकारात्मक
-0.1537
Answer 2-
कमजोर सकारात्मक
0.0223
कमजोर सकारात्मक
0.0011
कमजोर नकारात्मक
-0.0442
कमजोर सकारात्मक
0.0639
कमजोर सकारात्मक
0.0464
कमजोर सकारात्मक
0.0120
कमजोर नकारात्मक
-0.0960
Answer 3-
कमजोर नकारात्मक
-0.0031
कमजोर नकारात्मक
-0.0104
कमजोर नकारात्मक
-0.0407
कमजोर नकारात्मक
-0.0463
कमजोर सकारात्मक
0.0475
कमजोर सकारात्मक
0.0779
कमजोर नकारात्मक
-0.0213
Answer 4-
कमजोर सकारात्मक
0.0437
कमजोर सकारात्मक
0.0357
कमजोर नकारात्मक
-0.0197
कमजोर सकारात्मक
0.0161
कमजोर सकारात्मक
0.0311
कमजोर सकारात्मक
0.0187
कमजोर नकारात्मक
-0.0987
Answer 5-
कमजोर सकारात्मक
0.0296
कमजोर सकारात्मक
0.1300
कमजोर सकारात्मक
0.0124
कमजोर सकारात्मक
0.0749
कमजोर सकारात्मक
0.0014
कमजोर नकारात्मक
-0.0231
कमजोर नकारात्मक
-0.1771
Answer 6-
कमजोर नकारात्मक
-0.0008
कमजोर सकारात्मक
0.0090
कमजोर नकारात्मक
-0.0613
कमजोर नकारात्मक
-0.0070
कमजोर सकारात्मक
0.0196
कमजोर सकारात्मक
0.0803
कमजोर नकारात्मक
-0.0321
Answer 7-
कमजोर सकारात्मक
0.0118
कमजोर सकारात्मक
0.0401
कमजोर नकारात्मक
-0.0693
कमजोर नकारात्मक
-0.0246
कमजोर सकारात्मक
0.0471
कमजोर सकारात्मक
0.0623
कमजोर नकारात्मक
-0.0505
Answer 8-
कमजोर सकारात्मक
0.0697
कमजोर सकारात्मक
0.0875
कमजोर नकारात्मक
-0.0316
कमजोर सकारात्मक
0.0155
कमजोर सकारात्मक
0.0346
कमजोर सकारात्मक
0.0098
कमजोर नकारात्मक
-0.1373
Answer 9-
कमजोर सकारात्मक
0.0679
कमजोर सकारात्मक
0.1707
कमजोर सकारात्मक
0.0105
कमजोर सकारात्मक
0.0676
कमजोर नकारात्मक
-0.0138
कमजोर नकारात्मक
-0.0545
कमजोर नकारात्मक
-0.1821
Answer 10-
कमजोर सकारात्मक
0.0793
कमजोर सकारात्मक
0.0772
कमजोर नकारात्मक
-0.0208
कमजोर सकारात्मक
0.0242
कमजोर सकारात्मक
0.0343
कमजोर नकारात्मक
-0.0152
कमजोर नकारात्मक
-0.1300
Answer 11-
कमजोर सकारात्मक
0.0590
कमजोर सकारात्मक
0.0559
कमजोर नकारात्मक
-0.0071
कमजोर सकारात्मक
0.0082
कमजोर सकारात्मक
0.0205
कमजोर सकारात्मक
0.0266
कमजोर नकारात्मक
-0.1213
Answer 12-
कमजोर सकारात्मक
0.0405
कमजोर सकारात्मक
0.1050
कमजोर नकारात्मक
-0.0363
कमजोर सकारात्मक
0.0361
कमजोर सकारात्मक
0.0253
कमजोर सकारात्मक
0.0277
कमजोर नकारात्मक
-0.1522
Answer 13-
कमजोर सकारात्मक
0.0655
कमजोर सकारात्मक
0.1056
कमजोर नकारात्मक
-0.0439
कमजोर सकारात्मक
0.0270
कमजोर सकारात्मक
0.0417
कमजोर सकारात्मक
0.0152
कमजोर नकारात्मक
-0.1601
Answer 14-
कमजोर सकारात्मक
0.0728
कमजोर सकारात्मक
0.1049
कमजोर नकारात्मक
-0.0002
कमजोर नकारात्मक
-0.0088
कमजोर नकारात्मक
-0.0007
कमजोर सकारात्मक
0.0061
कमजोर नकारात्मक
-0.1187
Answer 15-
कमजोर सकारात्मक
0.0561
कमजोर सकारात्मक
0.1378
कमजोर नकारात्मक
-0.0415
कमजोर सकारात्मक
0.0178
कमजोर नकारात्मक
-0.0162
कमजोर सकारात्मक
0.0194
कमजोर नकारात्मक
-0.1176
Answer 16-
कमजोर सकारात्मक
0.0606
कमजोर सकारात्मक
0.0308
कमजोर नकारात्मक
-0.0348
कमजोर नकारात्मक
-0.0421
कमजोर सकारात्मक
0.0642
कमजोर सकारात्मक
0.0250
कमजोर नकारात्मक
-0.0717


एमएस एक्सेल में निर्यात करें
यह कार्यक्षमता आपके अपने VUCA चुनावों में उपलब्ध होगी
ठीक

You can not only just create your poll in the टैरिफ़ «V.U.C.A चुनाव डिजाइनर» (with a unique link and your logo) but also you can earn money by selling its results in the टैरिफ़ «पोल -दुकान», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing टैरिफ़ «मेरे SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
वेलेरी कोसेंको
उत्पाद स्वामी SaaS SDTEST®

वेलेरी को 1993 में एक सामाजिक शिक्षक-मनोवैज्ञानिक के रूप में योग्यता प्राप्त हुई थी और तब से उन्होंने परियोजना प्रबंधन में अपने ज्ञान को लागू किया है।
वलेरी ने 2013 में मास्टर डिग्री और प्रोजेक्ट और प्रोग्राम मैनेजर योग्यता प्राप्त की। अपने मास्टर कार्यक्रम के दौरान, वह प्रोजेक्ट रोडमैप (जीपीएम डॉयचे गेसेलशाफ्ट फर प्रोजेक्टमैनेजमेंट ई. वी.) और स्पाइरल डायनेमिक्स से परिचित हो गए।
वेलेरी वी.यू.सी.ए. की अनिश्चितता की खोज के लेखक हैं। मनोविज्ञान में स्पाइरल डायनेमिक्स और गणितीय सांख्यिकी का उपयोग करने वाली अवधारणा, और 38 अंतर्राष्ट्रीय सर्वेक्षण।
यह पोस्ट है 0 टिप्पणियाँ
को उत्तर
एक उत्तर रद्द करें
आपकी टिप्पणी को छोड़ दो
×
यदि त्रुटि
अपने सही संस्करण प्रस्ताव
के रूप में वांछित अपना ई-मेल दर्ज करें
संदेश
रद्द करना
Bot
sdtest
1
नमस्ते! मैं आपसे पूछता हूं, क्या आप पहले से ही सर्पिल गतिशीलता से परिचित हैं?