τεστ με βάση το βιβλίο «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Χορηγός

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Ενέργειες εταιρειών σε σχέση με το προσωπικό τον τελευταίο μήνα (ναι / όχι)

2) Δράσεις εταιρειών σε σχέση με το προσωπικό τον τελευταίο μήνα (γεγονός σε%)

3) Φόβοι

4) Τα μεγαλύτερα προβλήματα που αντιμετωπίζουν η χώρα μου

5) Ποιες ιδιότητες και ικανότητες χρησιμοποιούν οι καλοί ηγέτες κατά την οικοδόμηση επιτυχημένων ομάδων;

6) Google. Παράγοντες που επηρεάζουν την αποτελεσματικότητα της ομάδας

7) Οι κύριες προτεραιότητες των αιτούντων εργασίας

8) Τι κάνει ένα αφεντικό ένας μεγάλος ηγέτης;

9) Τι κάνει τους ανθρώπους επιτυχημένους στη δουλειά;

10) Είστε έτοιμοι να λάβετε λιγότερη αμοιβή για να εργαστείτε εξ αποστάσεως;

11) Υπάρχει ο Ageism;

12) Ολισμός στην καριέρα

13) Ολισμός στη ζωή

14) Αιτίες ηλικίας

15) Λόγοι για τους οποίους οι άνθρωποι παραιτούνται (από την Άννα ζωτική)

16) ΕΜΠΙΣΤΟΣΥΝΗ (#WVS)

17) Έρευνα ευτυχίας της Οξφόρδης

18) Ψυχολογική ευημερία

19) Πού θα ήταν η επόμενη πιο συναρπαστική ευκαιρία;

20) Τι θα κάνετε αυτήν την εβδομάδα για να φροντίσετε την ψυχική σας υγεία;

21) Ζω να σκεφτώ το παρελθόν, το παρόν ή το μέλλον μου

22) Αξιοκρατία

23) Τεχνητή νοημοσύνη και το τέλος του πολιτισμού

24) Γιατί οι άνθρωποι χρονοτριβούν;

25) Διαφορά φύλου στην οικοδόμηση αυτοπεποίθησης (IFD Allensbach)

26) Xing.com Αξιολόγηση πολιτισμού

27) Οι πέντε δυσλειτουργίες μιας ομάδας του Patrick Lencioni

28) Η ενσυναίσθηση είναι ...

29) Τι είναι απαραίτητο για τους ειδικούς πληροφορικής στην επιλογή μιας προσφοράς εργασίας;

30) Γιατί οι άνθρωποι αντιστέκονται στην αλλαγή (από το Siobhán McHale)

31) Πώς ρυθμίζετε τα συναισθήματά σας; (από τον Nawal Mustafa M.A.)

32) 21 δεξιότητες που σας πληρώνουν για πάντα (από τον Jeremiah Teo / 赵汉昇)

33) Η πραγματική ελευθερία είναι ...

34) 12 τρόποι για να οικοδομήσουμε εμπιστοσύνη με άλλους (από τον Justin Wright)

35) Χαρακτηριστικά ενός ταλαντούχου υπαλλήλου (από το Ινστιτούτο Διαχείρισης Ταλέντων)

36) 10 κλειδιά για την παρακίνηση της ομάδας σας

37) Άλγεβρα της συνείδησης (του Βλαντιμίρ Λεφέβρ)

38) Τρεις διακριτές δυνατότητες του μέλλοντος (από τον Δρ. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Φόβοι

Χώρα
Γλώσσα
-
Mail
Υπολογίζω εκ νέου
Κρίσιμη τιμή του συντελεστή συσχέτισης
Κανονική διανομή, από τον William Sealy Gosset (φοιτητής) r = 0.0331
Κανονική διανομή, από τον William Sealy Gosset (φοιτητής) r = 0.0331
Μη κανονική κατανομή, από τον Spearman r = 0.0013
ΔιανομήΜη
φυσιολογικός
Μη
φυσιολογικός
Μη
φυσιολογικός
ΚανονικόςΚανονικόςΚανονικόςΚανονικόςΚανονικός
Όλες οι ερωτήσεις
Όλες οι ερωτήσεις
Ο μεγαλύτερος φόβος μου είναι
Ο μεγαλύτερος φόβος μου είναι
Answer 1-
Αδύνατο θετικό
0.0562
Αδύνατο θετικό
0.0311
Αδύνατο αρνητικό
-0.0164
Αδύνατο θετικό
0.0903
Αδύνατο θετικό
0.0301
Αδύνατο αρνητικό
-0.0120
Αδύνατο αρνητικό
-0.1534
Answer 2-
Αδύνατο θετικό
0.0217
Αδύνατο θετικό
0.0011
Αδύνατο αρνητικό
-0.0455
Αδύνατο θετικό
0.0660
Αδύνατο θετικό
0.0440
Αδύνατο θετικό
0.0117
Αδύνατο αρνητικό
-0.0942
Answer 3-
Αδύνατο αρνητικό
-0.0034
Αδύνατο αρνητικό
-0.0104
Αδύνατο αρνητικό
-0.0419
Αδύνατο αρνητικό
-0.0451
Αδύνατο θετικό
0.0462
Αδύνατο θετικό
0.0780
Αδύνατο αρνητικό
-0.0204
Answer 4-
Αδύνατο θετικό
0.0436
Αδύνατο θετικό
0.0362
Αδύνατο αρνητικό
-0.0177
Αδύνατο θετικό
0.0150
Αδύνατο θετικό
0.0296
Αδύνατο θετικό
0.0189
Αδύνατο αρνητικό
-0.0984
Answer 5-
Αδύνατο θετικό
0.0298
Αδύνατο θετικό
0.1270
Αδύνατο θετικό
0.0133
Αδύνατο θετικό
0.0724
Αδύνατο αρνητικό
-0.0002
Αδύνατο αρνητικό
-0.0199
Αδύνατο αρνητικό
-0.1742
Answer 6-
Αδύνατο αρνητικό
-0.0003
Αδύνατο θετικό
0.0089
Αδύνατο αρνητικό
-0.0627
Αδύνατο αρνητικό
-0.0074
Αδύνατο θετικό
0.0190
Αδύνατο θετικό
0.0825
Αδύνατο αρνητικό
-0.0321
Answer 7-
Αδύνατο θετικό
0.0123
Αδύνατο θετικό
0.0388
Αδύνατο αρνητικό
-0.0684
Αδύνατο αρνητικό
-0.0238
Αδύνατο θετικό
0.0468
Αδύνατο θετικό
0.0631
Αδύνατο αρνητικό
-0.0517
Answer 8-
Αδύνατο θετικό
0.0699
Αδύνατο θετικό
0.0857
Αδύνατο αρνητικό
-0.0318
Αδύνατο θετικό
0.0150
Αδύνατο θετικό
0.0341
Αδύνατο θετικό
0.0125
Αδύνατο αρνητικό
-0.1372
Answer 9-
Αδύνατο θετικό
0.0666
Αδύνατο θετικό
0.1681
Αδύνατο θετικό
0.0094
Αδύνατο θετικό
0.0694
Αδύνατο αρνητικό
-0.0131
Αδύνατο αρνητικό
-0.0533
Αδύνατο αρνητικό
-0.1815
Answer 10-
Αδύνατο θετικό
0.0776
Αδύνατο θετικό
0.0744
Αδύνατο αρνητικό
-0.0185
Αδύνατο θετικό
0.0224
Αδύνατο θετικό
0.0352
Αδύνατο αρνητικό
-0.0135
Αδύνατο αρνητικό
-0.1293
Answer 11-
Αδύνατο θετικό
0.0585
Αδύνατο θετικό
0.0531
Αδύνατο αρνητικό
-0.0094
Αδύνατο θετικό
0.0086
Αδύνατο θετικό
0.0195
Αδύνατο θετικό
0.0313
Αδύνατο αρνητικό
-0.1200
Answer 12-
Αδύνατο θετικό
0.0378
Αδύνατο θετικό
0.1030
Αδύνατο αρνητικό
-0.0357
Αδύνατο θετικό
0.0350
Αδύνατο θετικό
0.0261
Αδύνατο θετικό
0.0297
Αδύνατο αρνητικό
-0.1510
Answer 13-
Αδύνατο θετικό
0.0642
Αδύνατο θετικό
0.1044
Αδύνατο αρνητικό
-0.0454
Αδύνατο θετικό
0.0259
Αδύνατο θετικό
0.0424
Αδύνατο θετικό
0.0183
Αδύνατο αρνητικό
-0.1595
Answer 14-
Αδύνατο θετικό
0.0718
Αδύνατο θετικό
0.1034
Αδύνατο αρνητικό
-0.0003
Αδύνατο αρνητικό
-0.0085
Αδύνατο αρνητικό
-0.0016
Αδύνατο θετικό
0.0074
Αδύνατο αρνητικό
-0.1172
Answer 15-
Αδύνατο θετικό
0.0550
Αδύνατο θετικό
0.1382
Αδύνατο αρνητικό
-0.0418
Αδύνατο θετικό
0.0181
Αδύνατο αρνητικό
-0.0163
Αδύνατο θετικό
0.0211
Αδύνατο αρνητικό
-0.1183
Answer 16-
Αδύνατο θετικό
0.0591
Αδύνατο θετικό
0.0276
Αδύνατο αρνητικό
-0.0384
Αδύνατο αρνητικό
-0.0397
Αδύνατο θετικό
0.0651
Αδύνατο θετικό
0.0280
Αδύνατο αρνητικό
-0.0710


Εξαγωγή στο MS Excel
Αυτή η λειτουργικότητα θα είναι διαθέσιμη στις δικές σας δημοσκοπήσεις VUCA
Εντάξει

You can not only just create your poll in the Δασμολόγιο «V.U.C.A σχεδιαστής δημοσκόπηση» (with a unique link and your logo) but also you can earn money by selling its results in the Δασμολόγιο «Ψήφοι», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Δασμολόγιο «Μου SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Βαλέριι Κοσένκο
Ιδιοκτήτης προϊόντος SaaS PET Project SDTest®

Ο Valerii χαρακτηρίστηκε ως κοινωνικός παιδαγωγός-ψυχολόγος το 1993 και από τότε έχει εφαρμόσει τις γνώσεις του στη διαχείριση του έργου.
Ο Valerii έλαβε μεταπτυχιακό δίπλωμα και το Project and Program Manager Conformation το 2013. Κατά τη διάρκεια του προγράμματος του μεταπτυχιακού του, εξοικειώθηκε με τον χάρτη πορείας του έργου (GPM Deutsche Gesellschaft Für ProjektManagement e. V.) και η Spiral Dynamics.
Ο Valerii πήρε διάφορες δοκιμασίες σπειροειδούς δυναμικής και χρησιμοποίησε τις γνώσεις και την εμπειρία του για να προσαρμόσει την τρέχουσα έκδοση του SDTest.
Ο Valerii είναι ο συγγραφέας της εξερεύνησης της αβεβαιότητας του V.U.C.A. Έννοια που χρησιμοποιεί τη σπειροειδής δυναμική και τα μαθηματικά στατιστικά στοιχεία στην ψυχολογία, περισσότερες από 20 διεθνείς δημοσκοπήσεις.
Αυτή η ανάρτηση έχει 0 Σχόλια
Να απαντήσουν σε
Ακυρώστε μια απάντηση
Αφήστε το σχόλιό σας
×
Βρείτε κάποιο λάθος
ΠΡΟΤΕΙΝΟΥΝ σωστή έκδοση ΣΑΣ
Συμπληρώστε το e-mail σας όπως επιθυμείτε
Στείλετε
Ματαίωση
Bot
sdtest
1
Γεια σου! Επιτρέψτε μου να σας ρωτήσω, ήδη εξοικειωθείτε με τη δυναμική της σπειροειδούς;