کتاب پر بنسټ ازموینه «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
سپانسر

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) په تیره میاشت کې د پرسونل په تړاو د شرکتونو عمل (هو / نه)

2) په تیره میاشت کې د پرسونل په تړاو د شرکتونو عمل (حقیقت په٪)

3) ویره

4) زما د هیواد په وړاندې ترټولو لوی مشکلات

5) کوم خصوصیات او وړتیاوې د بریالي ټیمونو جوړولو پر مهال ښه مشران کاروي؟

6) Google. فاکتورونه چې د ټیم EFFINT باندې تاثیر کوي

7) د دندو لټون کونکو اصلي لومړیتوبونه

8) کوم شی یو عالي مشر رامینځته کوي؟

9) څه خلک په کار کې بریالي کوي؟

10) ایا تاسو چمتو یاست چې د لرې ځای لپاره لږ معاش ترلاسه کړئ؟

11) ایا اتمال شتون لري؟

12) عظایف په مسلک کې

13) په ژوند کې اجتماعده

14) د عذاب لاملونه

15) لاملونه ولې خلک پریږدي (د انا حیاتي لخوا)

16) باور (#WVS)

17) د اکسفورډ خوښۍ سروې

18) رواني هوساینې

19) ستاسو راتلونکی په زړه پوری فرصت دی؟

20) تاسو به پدې اونۍ کې د خپل رواني روغتیا څارلو لپاره څه وکړئ؟

21) زه د خپل تیر، اوسني یا راتلونکي په اړه فکر کوم

22) متبادیکسیس

23) مصنوعي استخبارات او د تمدن پای

24) ولې خلک تراوسه اعلان کوي؟

25) د ځان باور په جوړولو کې د جنډر توپیر (که IFDINDINBCH)

26) د Xing.com کلتور ارزونه

27) پیټریک لنسي "د ټیم پنځه تخریبونه"

28) خواخوږي ده ...

29) د دندې وړاندیز غوره کولو کې د دې متخصصینو لپاره لازمي دي؟

30) ولې خلک د شعاع په وړاندې مقاومت کوي (د سیوبحین مچیل لخوا)

31) تاسو خپل احساسات څنګه تنظیم کوئ؟ (د نوال مصطفی م.

32) 21 مهارتونه چې تاسو ته د تل لپاره تادیه کوي (د Jeamiiah teo/ 赵汉昇)

33) ریښتینی ازادي ...

34) د نورو سره د باور جوړولو 12 لارې (په جسټین راویت)

35) د تکړه کارمند ځانګړتیاوې (د استعداد مدیریت انستیتوت)

36) ستاسو د ټیم هڅولو لپاره 10 کلي

37) د ضمیر الجبرا (د ولادیمیر لیفبویر لخوا)

38) د راتلونکي درې ځانګړي امکانات (د ډاکټر کلیر ډبلیو قبرز لخوا)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

ویره

د هېواد
ژبه
-
Mail
اصلاحات
د ارتباط ضريب مهمو ارزښت
نورمال ویش، د ولیم سمندري ګوسټ (زده کونکي) لخوا r = 0.0331
نورمال ویش، د ولیم سمندري ګوسټ (زده کونکي) لخوا r = 0.0331
غیر نورمال توزیع، د سپرمان لخوا r = 0.0013
ویشغیر
نورمال
غیر
نورمال
غیر
نورمال
نورمالنورمالنورمالنورمالنورمال
ټولې پوښتنې
ټولې پوښتنې
زما ترټولو لوی ویره ده
زما ترټولو لوی ویره ده
Answer 1-
کمزوری مثبت
0.0563
کمزوری مثبت
0.0317
کمزوری منفي
-0.0161
کمزوری مثبت
0.0907
کمزوری مثبت
0.0298
کمزوری منفي
-0.0126
کمزوری منفي
-0.1537
Answer 2-
کمزوری مثبت
0.0216
کمزوری مثبت
0.0002
کمزوری منفي
-0.0458
کمزوری مثبت
0.0654
کمزوری مثبت
0.0445
کمزوری مثبت
0.0124
کمزوری منفي
-0.0937
Answer 3-
کمزوری منفي
-0.0035
کمزوری منفي
-0.0111
کمزوری منفي
-0.0421
کمزوری منفي
-0.0456
کمزوری مثبت
0.0466
کمزوری مثبت
0.0786
کمزوری منفي
-0.0201
Answer 4-
کمزوری مثبت
0.0435
کمزوری مثبت
0.0353
کمزوری منفي
-0.0181
کمزوری مثبت
0.0145
کمزوری مثبت
0.0301
کمزوری مثبت
0.0197
کمزوری منفي
-0.0979
Answer 5-
کمزوری مثبت
0.0299
کمزوری مثبت
0.1279
کمزوری مثبت
0.0136
کمزوری مثبت
0.0730
کمزوری منفي
-0.0007
کمزوری منفي
-0.0207
کمزوری منفي
-0.1746
Answer 6-
کمزوری منفي
-0.0004
کمزوری مثبت
0.0082
کمزوری منفي
-0.0629
کمزوری منفي
-0.0078
کمزوری مثبت
0.0193
کمزوری مثبت
0.0830
کمزوری منفي
-0.0318
Answer 7-
کمزوری مثبت
0.0122
کمزوری مثبت
0.0381
کمزوری منفي
-0.0686
کمزوری منفي
-0.0242
کمزوری مثبت
0.0471
کمزوری مثبت
0.0636
کمزوری منفي
-0.0513
Answer 8-
کمزوری مثبت
0.0698
کمزوری مثبت
0.0849
کمزوری منفي
-0.0321
کمزوری مثبت
0.0146
کمزوری مثبت
0.0345
کمزوری مثبت
0.0130
کمزوری منفي
-0.1368
Answer 9-
کمزوری مثبت
0.0665
کمزوری مثبت
0.1674
کمزوری مثبت
0.0092
کمزوری مثبت
0.0691
کمزوری منفي
-0.0128
کمزوری منفي
-0.0528
کمزوری منفي
-0.1812
Answer 10-
کمزوری مثبت
0.0778
کمزوری مثبت
0.0755
کمزوری منفي
-0.0180
کمزوری مثبت
0.0231
کمزوری مثبت
0.0346
کمزوری منفي
-0.0146
کمزوری منفي
-0.1298
Answer 11-
کمزوری مثبت
0.0584
کمزوری مثبت
0.0524
کمزوری منفي
-0.0096
کمزوری مثبت
0.0081
کمزوری مثبت
0.0199
کمزوری مثبت
0.0318
کمزوری منفي
-0.1197
Answer 12-
کمزوری مثبت
0.0380
کمزوری مثبت
0.1042
کمزوری منفي
-0.0352
کمزوری مثبت
0.0357
کمزوری مثبت
0.0254
کمزوری مثبت
0.0286
کمزوری منفي
-0.1515
Answer 13-
کمزوری مثبت
0.0644
کمزوری مثبت
0.1057
کمزوری منفي
-0.0448
کمزوری مثبت
0.0268
کمزوری مثبت
0.0416
کمزوری مثبت
0.0169
کمزوری منفي
-0.1600
Answer 14-
کمزوری مثبت
0.0717
کمزوری مثبت
0.1026
کمزوری منفي
-0.0006
کمزوری منفي
-0.0089
کمزوری منفي
-0.0012
کمزوری مثبت
0.0080
کمزوری منفي
-0.1168
Answer 15-
کمزوری مثبت
0.0549
کمزوری مثبت
0.1375
کمزوری منفي
-0.0420
کمزوری مثبت
0.0178
کمزوری منفي
-0.0160
کمزوری مثبت
0.0216
کمزوری منفي
-0.1180
Answer 16-
کمزوری مثبت
0.0591
کمزوری مثبت
0.0273
کمزوری منفي
-0.0386
کمزوری منفي
-0.0399
کمزوری مثبت
0.0653
کمزوری مثبت
0.0282
کمزوری منفي
-0.0708


د MS اکسیل د صادراتو
دا فعالیت به ستاسو په خپل VUCA ټولپوښتنو کې شتون ولري
سمه ده

You can not only just create your poll in the د تعرفې «V.U.C.A د ټاکنو طراح» (with a unique link and your logo) but also you can earn money by selling its results in the د تعرفې «د ټولپوښتنې هټۍ», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing د تعرفې «زما SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
ویلرای کوسنکو
د محصول مالک ساس پالتو پروژه SDTyst®

والیري په 1993 کې د ټولنیز وزګارو - ارواپوه په توګه وړ و او وروسته له هغه چې د هغې پوهه د پروژې مدیریت کې یې کړې.
ویلريي په 2013 کې د ماسټرۍ سند او د پروژې او برنامې مدیر قابلیت ترلاسه کړ.
والرایی مختلف سپوږمۍ متحرک ازموینې اخیستي او د هغې پوهه او تجربه یې وکاروله ترڅو د sdteect اوسنی نسخه تنظیم کړي.
ویلريای د V.u.c.a د ناڅرګندتیا سپرونکي لیکوال دی. په اروائل کې د سپیررال متحرک او ریاضیاتو احصایو په کارولو سره په اروا پوهنې کې مفهوم، له 20 څخه ډیر نړیوال رایې.
دا پوسټ لري 0 نظرونه
ته ځواب ورکړئ
ځواب لغوه کړه
خپله نظر پرېږدئ
×
تاسو An error موندل
ستاسو په صحيح نسخه وړاندیز
ستاسو د برېښليک وليکئ په توګه د خوښې وړ
Send
لغوه
Bot
sdtest
1
پخیر! اجازه راکړئ تاسو څخه وپوښتم، ایا تاسو دمخه د سپک متحرک سره اشنا یاست؟