ujian berasaskan buku «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Penaja

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Tindakan syarikat berhubung dengan kakitangan pada bulan lalu (ya / tidak)

2) Tindakan syarikat berhubung dengan kakitangan pada bulan lepas (fakta dalam%)

3) Ketakutan

4) Masalah terbesar yang dihadapi negara saya

5) Apakah kualiti dan kebolehan yang digunakan oleh pemimpin yang baik ketika membina pasukan yang berjaya?

6) Google. Faktor yang memberi kesan kepada pasukan yang kuat

7) Keutamaan utama pencari kerja

8) Apa yang menjadikan bos sebagai pemimpin yang hebat?

9) Apa yang membuat orang berjaya di tempat kerja?

10) Adakah anda bersedia untuk menerima bayaran yang kurang untuk bekerja dari jauh?

11) Adakah umur wujud?

12) Ageism dalam kerjaya

13) Umur dalam hidup

14) Punca umur

15) Sebab Mengapa Orang Menyerah (oleh Anna Vital)

16) Kepercayaan (#WVS)

17) Kajian Kebahagiaan Oxford

18) Kesejahteraan psikologi

19) Di manakah peluang paling menarik seterusnya?

20) Apa yang akan anda lakukan minggu ini untuk menjaga kesihatan mental anda?

21) Saya hidup memikirkan masa lalu, masa kini atau masa depan saya

22) Meritokrasi

23) Kecerdasan buatan dan akhir tamadun

24) Mengapa orang menunda -nunda?

25) Perbezaan jantina dalam membina keyakinan diri (IFD Allensbach)

26) Xing.com Penilaian Budaya

27) Patrick Lencioni's "Lima Disfungsi Pasukan"

28) Empati adalah ...

29) Apa yang penting untuk pakar IT dalam memilih tawaran pekerjaan?

30) Mengapa Orang Menentang Perubahan (oleh Siobhán McHale)

31) Bagaimana anda mengawal emosi anda? (Oleh Nawal Mustafa M.A.)

32) 21 Kemahiran yang Membayar Anda Selamanya (oleh Jeremiah Teo / 赵汉昇)

33) Kebebasan sebenar adalah ...

34) 12 cara untuk membina kepercayaan dengan orang lain (oleh Justin Wright)

35) Ciri -ciri pekerja berbakat (oleh Institut Pengurusan Bakat)

36) 10 kunci untuk memotivasi pasukan anda

37) Algebra of Conscience (oleh Vladimir Lefebvre)

38) Tiga Kemungkinan Berbeza Masa Depan (oleh Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Ketakutan

negara
bahasa
-
Mail
Mengira semula
Nilai kritikal pekali korelasi
Pengagihan Normal, oleh William Sealy Gosset (Pelajar) r = 0.0331
Pengagihan Normal, oleh William Sealy Gosset (Pelajar) r = 0.0331
Pengedaran tidak normal, oleh Spearman r = 0.0013
PengedaranTidak
normal
Tidak
normal
Tidak
normal
BiasaBiasaBiasaBiasaBiasa
Semua soalan
Semua soalan
Ketakutan terbesar saya adalah
Ketakutan terbesar saya adalah
Answer 1-
Lemah positif
0.0562
Lemah positif
0.0311
Lemah negatif
-0.0164
Lemah positif
0.0903
Lemah positif
0.0301
Lemah negatif
-0.0120
Lemah negatif
-0.1534
Answer 2-
Lemah positif
0.0217
Lemah positif
0.0011
Lemah negatif
-0.0455
Lemah positif
0.0660
Lemah positif
0.0440
Lemah positif
0.0117
Lemah negatif
-0.0942
Answer 3-
Lemah negatif
-0.0034
Lemah negatif
-0.0104
Lemah negatif
-0.0419
Lemah negatif
-0.0451
Lemah positif
0.0462
Lemah positif
0.0780
Lemah negatif
-0.0204
Answer 4-
Lemah positif
0.0436
Lemah positif
0.0362
Lemah negatif
-0.0177
Lemah positif
0.0150
Lemah positif
0.0296
Lemah positif
0.0189
Lemah negatif
-0.0984
Answer 5-
Lemah positif
0.0298
Lemah positif
0.1270
Lemah positif
0.0133
Lemah positif
0.0724
Lemah negatif
-0.0002
Lemah negatif
-0.0199
Lemah negatif
-0.1742
Answer 6-
Lemah negatif
-0.0003
Lemah positif
0.0089
Lemah negatif
-0.0627
Lemah negatif
-0.0074
Lemah positif
0.0190
Lemah positif
0.0825
Lemah negatif
-0.0321
Answer 7-
Lemah positif
0.0123
Lemah positif
0.0388
Lemah negatif
-0.0684
Lemah negatif
-0.0238
Lemah positif
0.0468
Lemah positif
0.0631
Lemah negatif
-0.0517
Answer 8-
Lemah positif
0.0699
Lemah positif
0.0857
Lemah negatif
-0.0318
Lemah positif
0.0150
Lemah positif
0.0341
Lemah positif
0.0125
Lemah negatif
-0.1372
Answer 9-
Lemah positif
0.0666
Lemah positif
0.1681
Lemah positif
0.0094
Lemah positif
0.0694
Lemah negatif
-0.0131
Lemah negatif
-0.0533
Lemah negatif
-0.1815
Answer 10-
Lemah positif
0.0776
Lemah positif
0.0744
Lemah negatif
-0.0185
Lemah positif
0.0224
Lemah positif
0.0352
Lemah negatif
-0.0135
Lemah negatif
-0.1293
Answer 11-
Lemah positif
0.0585
Lemah positif
0.0531
Lemah negatif
-0.0094
Lemah positif
0.0086
Lemah positif
0.0195
Lemah positif
0.0313
Lemah negatif
-0.1200
Answer 12-
Lemah positif
0.0378
Lemah positif
0.1030
Lemah negatif
-0.0357
Lemah positif
0.0350
Lemah positif
0.0261
Lemah positif
0.0297
Lemah negatif
-0.1510
Answer 13-
Lemah positif
0.0642
Lemah positif
0.1044
Lemah negatif
-0.0454
Lemah positif
0.0259
Lemah positif
0.0424
Lemah positif
0.0183
Lemah negatif
-0.1595
Answer 14-
Lemah positif
0.0718
Lemah positif
0.1034
Lemah negatif
-0.0003
Lemah negatif
-0.0085
Lemah negatif
-0.0016
Lemah positif
0.0074
Lemah negatif
-0.1172
Answer 15-
Lemah positif
0.0550
Lemah positif
0.1382
Lemah negatif
-0.0418
Lemah positif
0.0181
Lemah negatif
-0.0163
Lemah positif
0.0211
Lemah negatif
-0.1183
Answer 16-
Lemah positif
0.0591
Lemah positif
0.0276
Lemah negatif
-0.0384
Lemah negatif
-0.0397
Lemah positif
0.0651
Lemah positif
0.0280
Lemah negatif
-0.0710


Eksport ke MS Excel
Fungsi ini akan tersedia dalam pemilihan VUCA anda sendiri
Okey

You can not only just create your poll in the tarif «V.U.C.A pereka suara» (with a unique link and your logo) but also you can earn money by selling its results in the tarif «Kedai Poll», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarif «Saya SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Pemilik Produk SaaS Pet Project SDTest®

Valerii layak sebagai ahli pedagogi sosial-psikologi pada tahun 1993 dan sejak itu telah menggunakan pengetahuannya dalam pengurusan projek.
Valerii memperoleh ijazah sarjana dan kelayakan pengurus projek dan program pada tahun 2013. Semasa program tuannya, beliau menjadi akrab dengan Roadmap Project (GPM Deutsche Gesellschaft für Projektmanagement e. V.) dan Spiral Dynamics.
Valerii mengambil pelbagai ujian dinamik lingkaran dan menggunakan pengetahuan dan pengalamannya untuk menyesuaikan versi semasa SDTest.
Valerii adalah pengarang meneroka ketidakpastian V.U.C.A. Konsep menggunakan dinamik lingkaran dan statistik matematik dalam psikologi, lebih daripada 20 pemilihan antarabangsa.
Jawatan ini mempunyai 0 Komen
Balas kepada
Batalkan jawapan
Tinggalkan komen anda
×
ANDA MENCARI AN ERROR
CADANGAN VERSION BETUL ANDA
Masukkan e-mel anda seperti yang dikehendaki
Hantar
Batal
Bot
sdtest
1
Hai! Izinkan saya bertanya kepada anda, adakah anda sudah biasa dengan dinamik lingkaran?