test adhedhasar buku «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsor

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Tumindak perusahaan sing ana gandhengane karo personel ing wulan kepungkur (ya / ora)

2) Tumindak perusahaan sing ana hubungane karo personel ing wulan kepungkur (kasunyatan ing%)

3) Wedi

4) Masalah paling gedhe sing madhep negaraku

5) Apa kuwalitas lan kabisan nindakake pimpinan sing apik nalika mbangun tim sukses?

6) Google. Faktor sing duwe pengaruh efak

7) Prioritas utama sing golek

8) Apa sing dadi pimpinan sing apik?

9) Apa sing ndadekake wong sukses ing kerja?

10) Apa sampeyan siap nampa mbayar sing kurang kanggo nyambut gawe?

11) Apa eganisme ana?

12) Ageisme ing karir

13) Ageism Ing Urip

14) Nimbulaké agama

15) Alasan Napa Wong Nyerah (dening Anna Vital)

16) Kapercayan (#WVS)

17) Survey rasa seneng Oxford

18) Kesejahteraan psikologis

19) Ing endi sampeyan bakal dadi kesempatan paling apik sampeyan?

20) Apa sing bakal ditindakake minggu iki kanggo njaga kesehatan mental sampeyan?

21) Aku urip mikir babagan kepungkur, saiki utawa masa depan

22) Meritokrasi

23) Intelijen buatan lan pungkasan peradaban

24) Napa wong sing nompo?

25) Bedane Gender ing Bangunan Kapercayan Dhiri (IFD ALLENSBACH)

26) Xing.com Taksiran Budaya

27) Patrick Lencioni "The Lima Dysfunctions tim"

28) Empathy iku ...

29) Apa sing penting kanggo milih penawaran proyek?

30) Napa wong nolak ganti (dening siobhán Mchale)

31) Kepiye carane ngatur emosi? (dening Nawal Mustafa M.A.)

32) 21 katrampilan sing mbayar sampeyan ing salawas-lawase (dening Yeremia Too / 赵汉昇)

33) Kabebasan nyata yaiku ...

34) 12 cara kanggo mbangun kapercayan karo wong liya (dening Justin Wright)

35) Karakteristik karyawan sing duwe bakat (dening Institut Manajemen Talent)

36) 10 tombol kanggo motivasi tim sampeyan

37) Algebra of Conscience (dening Vladimir Lefebvre)

38) Telung Kemungkinan Beda ing Masa Depan (dening Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Wedi

Negara
Language
-
Mail
Ngeculke
Nilai kritis koefisien gathukane
Distribusi normal, dening William Sefery Gosset (siswa) r = 0.0329
Distribusi normal, dening William Sefery Gosset (siswa) r = 0.0329
Distribusi Non Non, dening Spearman r = 0.0013
DistribusiOra
normal
Ora
normal
Ora
normal
NormalNormalNormalNormalNormal
Kabeh pitakon
Kabeh pitakon
Wedi paling gedhe yaiku
Wedi paling gedhe yaiku
Answer 1-
Positif ringkih
0.0566
Positif ringkih
0.0332
Negatif lemah
-0.0170
Positif ringkih
0.0912
Positif ringkih
0.0308
Negatif lemah
-0.0153
Negatif lemah
-0.1537
Answer 2-
Positif ringkih
0.0223
Positif ringkih
0.0011
Negatif lemah
-0.0442
Positif ringkih
0.0639
Positif ringkih
0.0464
Positif ringkih
0.0120
Negatif lemah
-0.0960
Answer 3-
Negatif lemah
-0.0031
Negatif lemah
-0.0104
Negatif lemah
-0.0407
Negatif lemah
-0.0463
Positif ringkih
0.0475
Positif ringkih
0.0779
Negatif lemah
-0.0213
Answer 4-
Positif ringkih
0.0437
Positif ringkih
0.0357
Negatif lemah
-0.0197
Positif ringkih
0.0161
Positif ringkih
0.0311
Positif ringkih
0.0187
Negatif lemah
-0.0987
Answer 5-
Positif ringkih
0.0296
Positif ringkih
0.1300
Positif ringkih
0.0124
Positif ringkih
0.0749
Positif ringkih
0.0014
Negatif lemah
-0.0231
Negatif lemah
-0.1771
Answer 6-
Negatif lemah
-0.0008
Positif ringkih
0.0090
Negatif lemah
-0.0613
Negatif lemah
-0.0070
Positif ringkih
0.0196
Positif ringkih
0.0803
Negatif lemah
-0.0321
Answer 7-
Positif ringkih
0.0118
Positif ringkih
0.0401
Negatif lemah
-0.0693
Negatif lemah
-0.0246
Positif ringkih
0.0471
Positif ringkih
0.0623
Negatif lemah
-0.0505
Answer 8-
Positif ringkih
0.0697
Positif ringkih
0.0875
Negatif lemah
-0.0316
Positif ringkih
0.0155
Positif ringkih
0.0346
Positif ringkih
0.0098
Negatif lemah
-0.1373
Answer 9-
Positif ringkih
0.0679
Positif ringkih
0.1707
Positif ringkih
0.0105
Positif ringkih
0.0676
Negatif lemah
-0.0138
Negatif lemah
-0.0545
Negatif lemah
-0.1821
Answer 10-
Positif ringkih
0.0793
Positif ringkih
0.0772
Negatif lemah
-0.0208
Positif ringkih
0.0242
Positif ringkih
0.0343
Negatif lemah
-0.0152
Negatif lemah
-0.1300
Answer 11-
Positif ringkih
0.0590
Positif ringkih
0.0559
Negatif lemah
-0.0071
Positif ringkih
0.0082
Positif ringkih
0.0205
Positif ringkih
0.0266
Negatif lemah
-0.1213
Answer 12-
Positif ringkih
0.0405
Positif ringkih
0.1050
Negatif lemah
-0.0363
Positif ringkih
0.0361
Positif ringkih
0.0253
Positif ringkih
0.0277
Negatif lemah
-0.1522
Answer 13-
Positif ringkih
0.0655
Positif ringkih
0.1056
Negatif lemah
-0.0439
Positif ringkih
0.0270
Positif ringkih
0.0417
Positif ringkih
0.0152
Negatif lemah
-0.1601
Answer 14-
Positif ringkih
0.0728
Positif ringkih
0.1049
Negatif lemah
-0.0002
Negatif lemah
-0.0088
Negatif lemah
-0.0007
Positif ringkih
0.0061
Negatif lemah
-0.1187
Answer 15-
Positif ringkih
0.0561
Positif ringkih
0.1378
Negatif lemah
-0.0415
Positif ringkih
0.0178
Negatif lemah
-0.0162
Positif ringkih
0.0194
Negatif lemah
-0.1176
Answer 16-
Positif ringkih
0.0606
Positif ringkih
0.0308
Negatif lemah
-0.0348
Negatif lemah
-0.0421
Positif ringkih
0.0642
Positif ringkih
0.0250
Negatif lemah
-0.0717


Kaca kanggo MS Excel
Fungsi iki bakal kasedhiya ing polling VUCA dhewe
Ok

You can not only just create your poll in the tariff «V.U.C.A Desainer jajak pendapat» (with a unique link and your logo) but also you can earn money by selling its results in the tariff «Toko Pool», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tariff «Kula SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Pamilik Produk SaaS SDTEST®

Valerii nduweni kualifikasi minangka pedagogue-psikolog sosial ing 1993 lan wiwit nggunakake kawruh ing manajemen proyek.
Valerii pikantuk gelar Master lan kualifikasi manajer proyek lan program ing 2013. Sajrone program Master, dheweke kenal karo Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) lan Spiral Dynamics.
Valerii punika penulis njelajah kahanan sing durung mesthi saka V.U.C.A. konsep nggunakake Spiral Dynamics lan statistik matematika ing psikologi, lan 38 polling internasional.
Iki kirim duwe 0 Komentar
Wangsulan menyang
Mbatalake balesan
Ninggalake komentar sampeyan
×
YOU Golek AN ERROR
Propose versi bener
Ketik e-mail panjenengan kaya sing dikarepake
Kirim
Batal
Bot
sdtest
1
Hai ana! Ayo kula takon, apa sampeyan wis kenal karo dinamika spiral?