ном суурилсан тест «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Ивээн тэтгэгч

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Сүүлийн сард ажилтнуудтай холбоотой ажилтнуудын үйл ажиллагаа (Тийм / Үгүй)

2) Сүүлийн сард ажилтнуудтай холбоотой компаниудын үйл ажиллагаа (баримт%)

3) Аймаг

4) Миний улс орны хамгийн том бэрхшээлүүд

5) Амжилтанд хүрсэн багуудыг барихдаа ямар чанар, чадварыг ашигладаг вэ?

6) Гүүгл: Багийн үр нөлөөнд нөлөөлдөг хүчин зүйлүүд

7) Ажлын байр хайгчдын гол тэргүүлэх чиглэлүүд

8) Дарга нь агуу удирдагч юу болгодог вэ?

9) Хүмүүс ажил дээрээ амжилтанд хүргэдэг зүйл юу вэ?

10) Алсаас ажиллахад бага цалин авахад бэлэн үү?

11) АМЬДРАЛЫГ ХЭРЭГЛЭХ ВЭ?

12) АВТОМАШИНГИЙН АЖИЛЛАГАА

13) Амьдрал дахь нас

14) АМЬДРАЛЫН АЖИЛЛАГАА

15) Хүмүүс яагаад бууж өгдөг шалтгаан (Анна амин чухал)

16) Итгэх (#WVS)

17) Оксфордын аз жаргал судалгаа

18) Сэтгэлзүйн сайн сайхан байдал

19) Таны дараагийн хамгийн сонирхолтой боломж хаана байх вэ?

20) Сэтгэцийн эрүүл мэндээ харж үзэхийн тулд энэ долоо хоногт та юу хийх вэ?

21) Би өнгөрсөн, одоо, одоо, ирээдүйн талаар бодож байна

22) Meryitocation

23) Хиймэл оюун ухаан ба соёл иргэншлийн төгсгөл

24) Хүмүүс яагаад хойшлодог вэ?

25) Өөртөө итгэх итгэлийг бий болгох жендэрийн ялгаа (ifd allensbach)

26) Xing.com соёлын үнэлгээ

27) Патрик Ленсиони "багийн таван дисфакцууд"

28) Эмпати бол ...

29) Энэ мэргэжилтэн ажлын саналыг сонгоход юу зайлшгүй шаардлагатай вэ?

30) Хүмүүс яагаад өөрчлөлтийг эсэргүүцдэг (Siobhán mchale)

31) Та сэтгэл хөдлөлөө яаж зохицуулдаг вэ? (Навал Мустафа м.а.

32) 21 Таныг үүрд төлдөг 21 ур чадвар (Жеремиагийн Тео / 赵汉昇)

33) Бодит эрх чөлөө бол ...

34) Бусадтай итгэх 12 арга (Жастин Райтаар)

35) Авьяаслаг ажилтны шинж чанар (авъяас чадварын хүрээлэн гэх мэт)

36) Багаа өдөөх 10 товчлуурууд

37) Ухамсрын алгебр (Владимир Лефебр)

38) Ирээдүйн гурван ялгаатай боломж (Др. Клэр В. Грейвс)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Аймаг

Улс
хэл
-
Mail
Дахин тооцоолох
Корреляцийн коэффициент нь чухал үнэ цэнэ
Ердийн хуваарилалт, Уильям далайн эргэлт (оюутан) r = 0.0331
Ердийн хуваарилалт, Уильям далайн эргэлт (оюутан) r = 0.0331
Энгийн бус хуваарилалт, Spearman r = 0.0013
ХувиарилалтЭнзлийн
биш
Энзлийн
биш
Энзлийн
биш
Хэвийн байдалХэвийн байдалХэвийн байдалХэвийн байдалХэвийн байдал
Бүх асуулт
Бүх асуулт
Миний хамгийн том айдас бол
Миний хамгийн том айдас бол
Answer 1-
Сул эерэг
0.0562
Сул эерэг
0.0311
Сул сул
-0.0164
Сул эерэг
0.0903
Сул эерэг
0.0301
Сул сул
-0.0120
Сул сул
-0.1534
Answer 2-
Сул эерэг
0.0217
Сул эерэг
0.0011
Сул сул
-0.0455
Сул эерэг
0.0660
Сул эерэг
0.0440
Сул эерэг
0.0117
Сул сул
-0.0942
Answer 3-
Сул сул
-0.0034
Сул сул
-0.0104
Сул сул
-0.0419
Сул сул
-0.0451
Сул эерэг
0.0462
Сул эерэг
0.0780
Сул сул
-0.0204
Answer 4-
Сул эерэг
0.0436
Сул эерэг
0.0362
Сул сул
-0.0177
Сул эерэг
0.0150
Сул эерэг
0.0296
Сул эерэг
0.0189
Сул сул
-0.0984
Answer 5-
Сул эерэг
0.0298
Сул эерэг
0.1270
Сул эерэг
0.0133
Сул эерэг
0.0724
Сул сул
-0.0002
Сул сул
-0.0199
Сул сул
-0.1742
Answer 6-
Сул сул
-0.0003
Сул эерэг
0.0089
Сул сул
-0.0627
Сул сул
-0.0074
Сул эерэг
0.0190
Сул эерэг
0.0825
Сул сул
-0.0321
Answer 7-
Сул эерэг
0.0123
Сул эерэг
0.0388
Сул сул
-0.0684
Сул сул
-0.0238
Сул эерэг
0.0468
Сул эерэг
0.0631
Сул сул
-0.0517
Answer 8-
Сул эерэг
0.0699
Сул эерэг
0.0857
Сул сул
-0.0318
Сул эерэг
0.0150
Сул эерэг
0.0341
Сул эерэг
0.0125
Сул сул
-0.1372
Answer 9-
Сул эерэг
0.0666
Сул эерэг
0.1681
Сул эерэг
0.0094
Сул эерэг
0.0694
Сул сул
-0.0131
Сул сул
-0.0533
Сул сул
-0.1815
Answer 10-
Сул эерэг
0.0776
Сул эерэг
0.0744
Сул сул
-0.0185
Сул эерэг
0.0224
Сул эерэг
0.0352
Сул сул
-0.0135
Сул сул
-0.1293
Answer 11-
Сул эерэг
0.0585
Сул эерэг
0.0531
Сул сул
-0.0094
Сул эерэг
0.0086
Сул эерэг
0.0195
Сул эерэг
0.0313
Сул сул
-0.1200
Answer 12-
Сул эерэг
0.0378
Сул эерэг
0.1030
Сул сул
-0.0357
Сул эерэг
0.0350
Сул эерэг
0.0261
Сул эерэг
0.0297
Сул сул
-0.1510
Answer 13-
Сул эерэг
0.0642
Сул эерэг
0.1044
Сул сул
-0.0454
Сул эерэг
0.0259
Сул эерэг
0.0424
Сул эерэг
0.0183
Сул сул
-0.1595
Answer 14-
Сул эерэг
0.0718
Сул эерэг
0.1034
Сул сул
-0.0003
Сул сул
-0.0085
Сул сул
-0.0016
Сул эерэг
0.0074
Сул сул
-0.1172
Answer 15-
Сул эерэг
0.0550
Сул эерэг
0.1382
Сул сул
-0.0418
Сул эерэг
0.0181
Сул сул
-0.0163
Сул эерэг
0.0211
Сул сул
-0.1183
Answer 16-
Сул эерэг
0.0591
Сул эерэг
0.0276
Сул сул
-0.0384
Сул сул
-0.0397
Сул эерэг
0.0651
Сул эерэг
0.0280
Сул сул
-0.0710


MS Excel Экспортын
Энэ функцийг өөрийн VUCA санал асуулгад ашиглах боломжтой
Болж байна уу

You can not only just create your poll in the тарифын «V.U.C.A санал асуулга зохион бүтээгч» (with a unique link and your logo) but also you can earn money by selling its results in the тарифын «Цорын дэлгүүр», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing тарифын «Миний SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
VALERII KOSENKO
Бүтээгдэхүүний эзэн SAAS POTE PONES SDTEST®

VALERII нь 1993 онд Нийгмийн хөгжлийн бэрхшээлтэй байсан бөгөөд 1993 онд нийгмийн хөгжлийн бэрхшээлтэй байсан бөгөөд Төслийн менежментийн мэдлэгээ хэрэглэснээс хойш.
WALERII нь магистрын зэрэг, төсөл, хөтөлбөр, хөтөлбөрийн менежерийг олж авсан бөгөөд энэ нь төслийн хөтөлбөр, Projectmap-тэй танилцуулсан.
Валерии нь янз бүрийн спираль динамик тестийг авч, өөрийн мэдлэг, туршлагыг ашигласан бөгөөд энэ нь SDTEST-ийн одоогийн хувилбарыг дасан зохицоход ашигласан.
Валери бол V.U.C.C.A-ийн тодорхой бус байдлыг судлах зохиогч юм. Спираль динамик, математик статистикийг сэтгэцийн санал, 20 гаруй олон улсын санал асуулга.
Энэ бичлэг нь 0 Смхиман
Хариулж
Хариулт цуцлах
Сэтгэгдэл орхих
×
Та алдаа олж
ТАНЫ зөв хувилбарыг санал болгож байна
хүссэн нь таны и-мэйл оруулна уу
илгээх
Болих
Bot
sdtest
1
Сайн уу! Танаас асууя, та спираль динамиктай танилцсан уу?